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Abstract
We present a general formalism based on the variational principle for finding
the time-optimal quantum evolution of mixed states governed by a master
equation, when the Hamiltonian and the Lindblad operators are subject to
certain constraints. The problem may be reduced to solving first a fundamental
equation, which can be written down once the constraints are specified, for
the Hamiltonian and then solving the constraints and the master equation for
the Lindblad and the density operators. As an application of our formalism,
we study a simple one-qubit model, where the optimal Lindblad operators can
be simulated by a tunable coupling with an ancillary qubit.

PACS numbers: 03.67.−a, 03.67.Lx, 03.65.Yz, 02.30.Yy

1. Introduction

Recently, many works related to time optimal quantum computation have appeared in the
literature [1–11]. The minimization of physical time to achieve a given unitary transformation
should provide a more physical description of the complexity of quantum algorithms. In a
series of previous works [12, 13], we established a general theory based on the variational
principle to find the time optimal evolution between the given initial and final pure states [12]
(paper I), and to find the time optimal way of generating a target unitary operation for arbitrary
initial states [13] (paper II). In paper I, we studied closed pure quantum systems driven by the
Schrödinger equation and where the Hamiltonian is controllable within a certain available set.
Paper II is an extension of paper I and is more relevant to subroutines in quantum computation,
where the input may be unknown. The main result of our works is that, once the constraints
for the Hamiltonian are given, one can systematically derive a fundamental equation (which
we call the quantum brachistochrone) that can always be solved, at least numerically, for the
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time optimal Hamiltonian (without any further restricting assumptions, e.g. the adiabaticity of
the quantum evolution).

Here we extend our previous works and formulate a variational principle for the time
optimal control of the evolution of quantum mixed states in open systems, where the dynamics
is driven by a master equation in the Lindblad form [14, 15]. The Lindblad operators in the
master equation describe non-unitary evolution, which can be called decoherence if it is not
controllable and a measurement if it is controllable. It is interesting to note that sometimes
measurements can accelerate the state evolution to the desired final state4. In this work, we
discuss the time optimal evolution of a mixed state by controlling the Hamiltonian and the
Lindblad operators.

Historically, quantum control theory of pure states has been studied by many people (for
a review of the subject, see, e.g., [16]). Around 20 years ago, Peirce, Dahleh and Rabitz [17]
considered a variational method to manufacture a wave packet as close as possible to a given
target. Other authors (see, e.g., [18] and other references in [16]) further investigated the
variational methods by optimizing the fidelity between the final state of the steered system and
a given target state. The application to the optimal realization of unitary gates in closed systems
was also studied (see, e.g., [19]). For the case of quantum mixed states, the master equation in
the Lindblad form has been used in many works [20–22]. However, while the main concern of
these papers was the optimization of the fidelity or the purity of the quantum operations, here
we focus the attention on the time optimality. Furthermore, we concentrate on the problem
of state evolution, i.e., the present work is a direct extension of paper I to the case of mixed
states. Although the Lindblad operators are usually treated in the context of decoherence
and assumed to be uncontrollable, there are some works which discuss controllable Lindblad
operators (e.g. [23]).

The paper is organized as follows. In section 2, we introduce the Markovian approximation
and the master equation for an open quantum system. In section 3, we set up the general
variational formalism for finding the time optimal evolution between the given initial and final
states of such an open system. The action consists of a time-cost function to be minimized
and of Lagrange multiplier terms which ensure the state evolution under the master equation
and certain constraints for the available Hamiltonian and Lindblad operators. We then derive
the fundamental equations of motion. In section 4 we explicitly demonstrate our methods via
the example of a one-qubit system by deriving the time optimal Hamiltonian, Lindblad and
density operators, which may represent either a measurement or a decoherence process. In
section 5, we simulate the optimal operations derived in section 4 by the partial trace of a
two-qubit self-interacting system with a controllable Hamiltonian and ancillary qubit. This
corresponds to a repetition of short-time measurements. Finally, section 6 is devoted to the
summary and discussion of our results, while in the appendix we discuss the gauge degrees of
freedom of the master equation.

2. Master equation

In this paper, we address the problem of time optimal quantum control of open systems where
the dynamics is described by a master equation in the Lindblad form [14, 15]

ρ̇ = L(ρ) := −i[H, ρ] +
∑

a

(
LaρL†

a − 1

2

{
L†

aLa, ρ
})

(1)

4 This can be seen by the simple example of a photon counter. Suppose that the system can be in two states specified
by the number of photons, zero and one. By absorbing a photon, the photon counter changes the state |1〉 to |0〉 and
leaves |0〉 unchanged. This can be used to accelerate the transition to the state |0〉 .
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for the density operator ρ(t), where H(t) is the Hamiltonian, La(t) (a = 1, . . . , N2 − 1)

are the Lindblad operators, N is the dimension of the Hilbert space of the system and we use
the notation Ȧ := dA/dt for time derivatives, [A,B] := AB − BA for the commutator and
{A,B} := AB +BA for the anticommutator. The Hamiltonian represents the unitary evolution
part while the Lindblad operators express generalized measurements or decoherence processes
due to the coupling of the system with an environment. The master equation is Markovian, i.e.
the environment has no memory of the main physical system. It can be physically realized,
if the interaction between the main system and the environment is weak and its typical time
scale is small compared with that of the physical system [24, 25]. A simple example discussed
in section 5 illustrates how the repetition of a short time unitary evolution and the partial trace
(e.g., measurement) over the environment states (35) reproduces the master equation (1).

From the gauge freedom of the master equation (1) (see the appendix), we can always
choose H = H̃ , La = L̃a , where a tilde denotes the traceless part of an operator,
Ã := A − (Tr A/N)11. Furthermore, by using the degrees of freedom of (A.2), we can
also choose the La to be mutually orthogonal. This is the gauge choice which we make
throughout this paper.

3. General formalism

Let us consider the problem of controlling a certain physical system governed by the master
equation (1) and of steering its transition between given initial and final quantum states in
the shortest time. Mathematically, this is a time optimality problem for the evolution of the
density operator ρ(t) according to (1) by controlling the Hamiltonian H(t) and the Lindblad
operators La(t). We assume that at least the ‘magnitudes’ of the Hamiltonian and of the
Lindblad operators are bounded. Physically, this corresponds to the fact that one can afford
only a finite energy in the experiment, and that a finite level of decoherence is tolerated.
Besides this normalization constraint, the available operations may be subject also to other
constraints, which can represent either experimental requirements (e.g., the specifications of
the apparatus in use) or theoretical conditions (e.g., allowing no operations involving three or
more qubits).

We then consider the following action for the dynamical variables ρ(t),H(t) and La(t):

S =
∫ 1

0
dτ(α + Tr[σ(ρ ′ − αL(ρ))] + LC), (2)

where

LC :=
∑
m

λ̄mfm(H) +
∑
a,b

µ̄ab

[
Tr

(
L†

aLb

) − Nγ 2
a δab

]
. (3)

Let us explain the notation and the meaning of the various terms in (2) and (3). The parameter
τ can be arbitrarily chosen as long as it satisfies the conditions ρ(0) = ρi and ρ(1) = ρf , so
that the action S is invariant under reparameterization of τ . The quantity α is the time cost.
The traceless Hermitian operator σ(t), the real functions λ̄m(t) (m = 0, . . . ,M − 1) and the
complex functions µ̄ab(t) = µ̄∗

ba(t) (a, b = 1, . . . , N2 − 1) are Lagrange multipliers, the real
functions fm are the constraints for the Hamiltonian, and γa > 0 are the decoherence rates
or the measurement strengths. Furthermore, we denote A′ := dA/dτ . As mentioned in the
previous section, we assume (even before taking variations of the action) that Tr ρ(t) = 1 and
H and La are traceless5.

5 Our results are unchanged if one explicitly introduces Lagrange multiplier terms in action (2) in order to ensure
the trace conditions for the operators H, La, σ and ρ.
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The first term in action (2) can be interpreted as either one of the following: (1) a positive
independent dynamical variable, the lapse function, which measures the physical time lapsed
in each infinitesimal interval dτ of the parameter time τ ; or (2) any positive functional of
the other dynamical variables ensuring that the action is reparameterization invariant and that∫

α dτ becomes the physical time t under the equations of motion. In the second case, α can

be chosen for example to be
√

gρ(ρ ′,ρ ′)
gρ(L(ρ),L(ρ))

, where gρ is any reasonable metric on the space

of density operators, e.g., the Bures metric or more generally a Morozova–Chentsov–Petz
monotone metric [27, 28]. This choice is motivated by the Anandan–Aharonov relation in
the case of pure states and therefore yields a natural extension of paper I to the mixed states.
However, here we choose the first option and take α as an independent dynamical variable,
which makes the derivation of the equations of motion simpler.

The second term in action (2) guarantees that ρ(t) satisfies the master equation (1). In
fact, from the variation by σ , we obtain

ρ ′ − αL(ρ) = 0. (4)

By defining t := ∫
α(τ) dτ and interpreting t as the physical time, the above equation

is equivalent to the master equation (1), and the minimization problem of S becomes the
optimization problem for the physical time.

The third term LC in action (2) generates two types of constraints. The first set is obtained
from the variation of S by λ̄m and consists of the M constraints for the Hamiltonian,

fm(H) = 0. (5)

The second set, obtained from the variation of S by µ̄ab, ensures the normalization and the
mutual orthogonality of the La operators,

Tr
(
L†

aLb

) = Nγ 2
a δab. (6)

Although one can consider more general constraints for La , which is particularly important if
controllable and uncontrollable Lindblad operators coexist, we restrict ourselves to the case (6)
for the simplicity of the presentation. The extension to more general cases is straightforward.

Let us then derive the other equations of motion. From the variation of S by ρ, with the
help of (1), one gets the adjoint master equation6

σ̇ = −L̃†(σ ), (7)

where the superoperator L† is defined by Tr[A†L(B)] = Tr[L†(A)B] and its explicit form is
L†(A) = i[H,A] +

∑
a

(
L

†
aALa − 1

2

{
L

†
aLa,A

})
. The variation of S by H with the aid of (1)

implies

F = −i[ρ, σ ], (8)

where we have defined a traceless operator

F(H) :=
∑
m

λm

∂fm(H)

∂H
, (9)

with λm := λ̄m/α. From the variation of S by L
†
a , together with (1), we obtain an algebraic

equation (see footnote 6)

traceless part of

[
σLaρ − 1

2
La{ρ, σ }

]
=

∑
b

µabLb, (10)

6 Here, we have used the fact that the differential ∂L̄/∂A of a scalar functional L̄ by an operator A with fixed trace
is traceless.
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where µab := µ̄ab/α. One can show that µab is actually diagonal, i.e. that µab = µaδab with
real µa ,7 and therefore one gets

traceless part of
[
σLaρ − 1

2La{ρ, σ }] = µaLa, (11)

which is an eigenvalue equation with eigenvalues µa for the eigenvectors La .
Combining (1), (7), (8) and (11) we can eliminate the Lagrange multipliers σ and µa

8 to
obtain what we call the quantum brachistochrone equation

iḞ = [H,F ]. (12)

Finally, the condition derived from the variation of S by α, i.e. Tr σL(ρ) = 1, merely
determines the common scale for the (unphysical) Lagrange multipliers σ, λm and µab.9

As a result, the time optimality problem reduces to the following set of equations for the
variables ρ(t),H(t), La(t), σ (t), λm(t) and µa(t): the master equation (1), the constraints (5)
and (6), the adjoint master equation (7), the eigenvalue equation (11) and a choice between
the quantum brachistochrone equation (12) or an algebraic equation (8) (with the definition
(9)). The variable α has been absorbed completely.

We emphasize that the quantum brachistochrone equation (12) is the same and universal
for pure states (paper I) and for unitary operations (paper II). In particular, (12) involves only
the Hamiltonian operator H but not the Lindblad operators La .10 Thus one can find H(t)

independently from ρ(t) and La(t). This is done by solving a closed set of equations for H(t)

and λm(t), which consists of the quantum brachistochrone (12) and the algebraic equations (5)
and (9). As for the initial values, F(0) must be specified by ρi and some Hermitian operator
σ(0) through (8), and then H(0) and λm(0) are determined from (5) and (9).11 Finally, to
obtain the time evolution of ρ(t) and La(t), one must solve the remaining equations (1), (7)
and (11), in a way similar to what is described below.

An alternative procedure, which may be practical for the numerical integration, is the
following. Suppose the initial and final states ρi and ρf are given. One first specifies a trial
initial value σ(0). At each instant, if ρ(t) and σ(t) are known, one can algebraically find F(t)

from (8), La(t) and µab(t) from (6) and (11), and then H(t) and λm(t) from (5) and (9) (see
footnote 11). Thus, starting from σ(0) and ρ(0) = ρi , one can integrate the master equation
(1) and the adjoint master equation (7). Finally, the whole procedure is repeated until one finds
a good σ(0) which generates the trajectory such that ρ(T ) = ρf for some T > 0. Besides
this shooting method, there may be other numerical strategies [29].

7 With the help of the orthogonality condition (6) we can see from (10) that Nµ2
ab(γ

2
a − γ 2

b ) = Tr[(σLbρ −
1
2 Lb{ρ, σ })L†

a − Lb(σL
†
aρ − 1

2 {ρ, σ }L†
a)]. The right-hand side of the latter formula is identically zero so that one

can conclude that µab = 0 if γa �=γb . For equal γa , one can still rotate (using (A.2)) the La and diagonalize µab . In
all cases, we obtain µab = µaδab .
8 Taking the derivative of (8) and using (1) and (7) we obtain Ḟ = −i[H, F ] + i

∑
a([LaρL

†
a − 1

2 {L†
aLa, ρ}σ ] +

[L†
aσLa − 1

2 {L†
aLa, σ }ρ]). Then, inserting (11) and its adjoint, we obtain (12).

9 By substituting (8) and the trace of ‘(11) times L
†
a’ into Tr σL(ρ) = 1, one finds Tr HF = 1 − N

∑
µaγ

2
a .

This equation is, however, not independent of the other equations of motion, except for the initial values, so that
we do not need to solve it. This can be seen by (Tr HF )̇ = Tr ḢF + Tr HḞ = ∑

m λmḟm − iTr H [H, F ] = 0,
where we have used definition (9) for F, the quantum brachistochrone equation (12) and the constraints (5). Then
Tr HF = 1−N

∑
µaγ

2
a always holds if it does initially too. The condition can always be satisfied by a simultaneous

rescaling of σ(t), λm(t) and µab(t) under which all the other equations of motion are invariant.
10 This is so because we assumed that the constraints for H and those for La are independent, as can be seen in (3)
which is natural physically. In a more general case, where LC = ∑

m λ̄mfm(H, La, L
†
a), the RHS of (10) becomes

F
†
a and (12) reads iḞ = [H, F ] +

∑
a([La, Fa] + [L†

a, F
†
a ]) where Fa := ∂LC/∂La , and hence the equations couple

more severely. Note, however, that in many cases one still has [La, Fa] = 0 so that the quantum brachistochrone
equation reduces to (12).
11 The Hamiltonian H(t) and the Lagrange multipliers λm(t) have N2 − 1 and M degrees of freedom, respectively.
Thus they can be determined algebraically at each time t from the M equations (5) and the N2 − 1 equations (9).
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4. A one-qubit example

Let us now discuss as an explicit example of our general formalism the simple case of a
one-qubit model where the Hamiltonian is subject only to the normalization constraint

f0(H) := 1
2 (Tr H 2 − 2ω2) = 0, (13)

where ω is a given constant. In this case, F = λ0H and the quantum brachistochrone
equation (12) becomes trivial, giving H = const and λ0 = const (see section 3 in paper II).
Our problem then reduces to that of solving the master equation (1) and the adjoint master
equation (7) together with the algebraic equations (8) and (11) for ρ(t), La(t) and σ(t). In
the Pauli basis {σx, σy, σz} these can be rewritten as equations for three-dimensional vectors.
Namely, if we parameterize the states as

ρ(t) := 1
2 [11 + r(t) · σ], (14)

σ(t) := s(t) · σ, (15)

and the Hamiltonian and the Lindblad operators as

H := h · σ, (16)

La(t) := la(t) · σ, (17)

where r, s and h ∈ R3 and la ∈ C3, the master equation (1) and the adjoint master
equation (7) can be rewritten as

ṙ = 2[h × r +
∑
l∈{la}

(Re((l · r)l∗) − |l|2r + il × l∗)], (18)

ṡ = 2[h × s −
∑
l∈{la}

(Re((l · s)l∗) − |l|2s)]. (19)

Moreover, the algebraic equations (8) and (11) read

r × s = λ0h = const. (20)

and

K(r, s)la = νala, (21)

where K(r, s) is the self-adjoint matrix

Kjk(r, s) := rj sk + rksj − 2i
∑

l=1,2,3

εjklsl (22)

with j, k = 1, 2, 3 and νa := 2(r · s + µa) is a real number.
Because of the constraints (13) and (20), the components of the Hamiltonian h are given

by

h =
⎧⎨⎩±ω

r × s

|r × s| if r × s �= 0,

ωn if r × s = 0,

(23)

where n is an arbitrary unit vector. The components of the Lindblad operators la are determined
as eigenvectors of the eigenvalue equation (21) with the constraints (6), i.e. |la| = γa .

6
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At a given instant, we parameterize r(t) and s(t) as

r(t) := r

(
cos

θ

2
e3 + sin

θ

2
e1

)
, (24)

s(t) := s

(
cos

θ

2
e3 − sin

θ

2
e1

)
, (25)

where {e1(t),e2(t),e3(t)} are orthonormal vectors, so that r · s = rs cos θ , with r ∈ [0, 1]
and θ ∈ [0, π ]. We can then rewrite the matrix K in (22) as

(Kjk) = 2s

⎡⎢⎣−r sin2 θ
2 −i cos θ

2 0

i cos θ
2 0 i sin θ

2

0 −i sin θ
2 r cos2 θ

2

⎤⎥⎦ . (26)

If the conserved vector satisfies r × s = 0, we can see that θ = 0 (i.e. r = re3), and the
components of the Lindblad operators are given by (21) and (26) as the following vectors:

l1(t) = γ1√
2
(e1 + ie2), (27)

l2(t) = γ2√
2
(e1 − ie2), (28)

l3(t) = γ3e3. (29)

To simplify the analysis, we can move to the interaction picture by the transformation
ρ̄ = U0ρU

†
0 := 1

2 (11 + r̄ · σ) with U0(t) = T exp(−i
∫

H(t) dt) (T is the time-ordered
product), so that the master equation (18) becomes

˙̄r = −2
[(

γ 2
1 + γ 2

2

)
r̄ − (

γ 2
1 − γ 2

2

)
e3

]
, (30)

which guarantees ė3 = 0. Therefore, we obtain the following solution for the Bloch vector in
the interaction picture:

r̄(t) =
[

γ 2
1 − γ 2

2

γ 2
1 + γ 2

2

+

(
r̄(0) − γ 2

1 − γ 2
2

γ 2
1 + γ 2

2

)
e−2(γ 2

1 +γ 2
2 )t

]
e3. (31)

If the magnitudes of the Lindblad operators are equal, i.e. γ1 = γ2, the state will irretrievably
lose the coherence, but the coherence can be recovered when the magnitudes of the Lindblad
operators are different. Note that in this particular case the L3 operator, which corresponds to
a projective measurement along e3, is not effective for the state evolution while the amplitude
damping channels L1 and L2 play a significant role in (31). The case h = 0 is depicted in
figure 1. In the case when r × s �= 0, the coupled equations (18), (19) and (21) can be solved
numerically. We depict a family of optimal trajectories from a mixed state to a pure state in
the Bloch sphere in figure 2.

As a final remark for this section we would like to point out that in order to make the time
duration of the transition physically well-defined, one can introduce a small but finite error
region around the target state. That is, one can be more interested in reaching the target state
with a fixed fidelity close to one. Then, for example, while mathematically it takes an infinite
time for the system to reach the target state, the system actually approaches the target state and
enters into its small surrounding region in a finite time. In particular, in some cases the time
optimal mixed state evolution can be faster than the time optimal pure state evolution (thick
solid curve in figure 1) discussed in paper I.

7
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x

y

z

Figure 1. Analytical, time optimal evolution of ρ(t) (arrows) in the Bloch sphere for the case of
r × s = 0, r ∝ ez, γ1 = 0, γ2 �= 0 and ρ(0) = |↑〉〈↑|. Also shown (thick solid meridian curve)
the optimal pure state evolution between the north and south poles (paper I).

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

0

1

2

3

4

5

Figure 2. Time optimal evolutions of a mixed state governed by the master equation with the
Lindblad operators having magnitudes γ1 = γ3 = 0 and γ2 �= 0. Curves starting from r = 0.8ez

and approaching r = −ez are trajectories of the Bloch vector in the x–z plane cross-section of the
Bloch sphere. The initial direction of the curves is different for each initial angle between r and s,
i.e. r · s = rs cos nπ

6 , n = 0, 1, . . . , 5.
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5. A model for measurement or decoherence

To get a further physical insight into our formalism, we study a simple model consisting
of two interacting spins, one of which is identified with our system (A) and the other is
an externally controllable ancilla (B). The extra ancilla spin can be regarded as representing
either a measurement apparatus or an environment. The two-qubit Hamiltonian can be chosen
without loss of generality (modulo local rotations of the system and ancilla qubits) as

HAB(t) :=
∑

j,k=x,y,z

hjk(t)σj ⊗ σk, (32)

with time-dependent, tunable couplings hjk(t).12

The main goal of this section will be now to demonstrate how the optimal Hamiltonian
and Lindblad operators found in the one-qubit model of the previous section can be actually
simulated via the repetition of short time Markovian transitions in this simple two-qubit system
by tuning the couplings in (32) and the state of the ancilla. In fact, the state of the system is
described by the density operator (14) and the state of the ancilla by

ρB(t) := 1
2 [11 + b(t) · σ], (33)

where b is a tunable Bloch vector. The master equation in the Lindblad form (1) comes from
the repetition of the unitary evolution by the interaction HAB for a short time duration ε (i.e.,
for ε much smaller than the typical dynamical timescale of ρ(t)) and the partial trace over the
B state. Namely,

ρ(t + ε) = TrB
[
e−iHABερ(t) ⊗ ρB(t) eiHABε

]
= ρ(t) − iε TrB[HAB, ρ(t) ⊗ ρB(t)] + ε2

{
TrB[HAB(ρ(t) ⊗ ρB(t))HAB]

− TrB
[

1
2

{
H 2

AB, ρ(t) ⊗ ρB(t)
}]}

+ O(ε3). (34)

For our model Hamiltonian, we can perform the partial trace over the B state and get

ρ(t + ε) = ρ(t) − iε[H, ρ(t)]

+ ε2
∑

j,k=x,y,z

ajk(t)

[
σjρ(t)σk − 1

2
{σkσj , ρ(t)}

]
+ O(ε3), (35)

where the effective single qubit Hamiltonian H is given in terms of the couplings hjk and the
Bloch vector bj as

H(t) :=
∑

j,k=x,y,z

hjkbkσj , (36)

while the Lindblad matrix is defined by

ajk(t) :=
∑

l,m=x,y,z

hjlhkm

(
δlm − i

∑
n=x,y,z

εlmnbn

)
. (37)

The eigenvectors and the eigenvalues of (37) together define the components of the Lindblad
operators. Therefore, since the same components are also the eigenvectors in (21), one has
to impose the commutativity condition [a,K] = 0, where K is given by (22). The real and
imaginary parts of the later condition give three and nine constraints, respectively, so that we
have twelve constraints in total for the nine parameters of hjk and the three parameters of
bj . Then we can adjust the Hamiltonian couplings hjk and the components bj of the Bloch

12 For example, a tunable spin-spin coupling can be physically realized through superconducting flux qubits [30].
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vector of the ancilla state so that the optimal r(t), s(t),h(t) and la(t) obtained in the previous
section are reproduced.

In particular, if r and s are parallel (and chosen to be along the z-axis as at the end of the
previous section), we can see that it is sufficient to choose the coupling matrix hjk as

(hjk) =
⎡⎣0 p 0

p 0 0
0 0 q

⎤⎦ , (38)

with real numbers p, q, and the Bloch vector b as

b = bez. (39)

The Lindblad matrix (37) becomes

(ajk) =
⎡⎣ p2 ibp2 0

−ibp2 p2 0
0 0 q2

⎤⎦ . (40)

Then the K matrix (26) for θ = 0,

(Kjk) = 2s

⎡⎣0 −i 0
i 0 0
0 0 r

⎤⎦ , (41)

and the Lindblad matrix a can be diagonalized simultaneously. In particular, the eigenvalues
of a are p2(1 ∓ b), q2 and the corresponding eigenvectors are given as in (27)–(29), with the
magnitudes of the Lindblad operators

γ 2
1 = (1 − b)εp2, (42)

γ 2
2 = (1 + b)εp2, (43)

γ 2
3 = εq2. (44)

The optimal solution for r(t) can be finally cast in the form

r(t) = [−b + (r(0) + b) e−4p2εt ] ez. (45)

An intuitive explanation for the behavior of the Bloch vector is the following. The exponential
damping in (45) can be attributed to the standard formula for the transition probability
calculated from the interaction Hamiltonian

HAB = p(σx ⊗ σy + σy ⊗ σx) + qσz ⊗ σz. (46)

Note that q does not appear in (45) so that it can be put equal to zero. Suppose now that
the B spin is up, i.e. b = 1. Since the interaction Hamiltonian (46) is proportional to
σ+ ⊗ σ+ − σ− ⊗ σ−, both the system and the ancilla spins tend to align down. Suppose we
start with the completely mixed state r(0) = 0. In the statistical interpretation of the density
operator, this means that in half of the systems the spin is up while in the other half it is down.
The up components are steered down while the down components remain unchanged, so that
eventually the state of the system evolves from a completely mixed state to a purely down
state. This kind of ‘cooling’ has been already discussed before [32]. On the other hand, for
b = 0, the system approaches a completely mixed state regardless of the initial conditions,
as we expect because the system is kept in contact with the completely random state of the
ancilla, ρB = 11/2. This corresponds to decoherence. We would like to remark that although
the coupling parameters hjk and the ancilla state are constant in our particular parallel r and
s case, they can be time dependent in general. This particular demonstration of a simple
two-qubit model is enough to illustrate the physics behind the time-optimal evolution of a
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one-qubit mixed state driven by a master equation in the Lindblad form which was presented
in section 4.

6. Summary and discussion

We have developed a framework based on the variational principle for finding the time optimal
quantum evolution necessary to steer the transition between given initial and final states ρi and
ρf , when the physical system obeys a master equation in the Lindblad form. The equations
of motion for the Hamiltonian H and the Lindblad operators La can be written down, once
the constraints for H and La are specified according to the problem. One then obtains the
time optimal operation (H(t), La(t)) and the optimal duration time T by solving the quantum
brachistochrone together with the other equations of motion and imposing the initial and final
conditions ρ(0) = ρi and ρ(T ) = ρf .

Our general formalism for the time optimal evolution of mixed states has been explicitly
demonstrated with a one-qubit model. First, the optimal Hamiltonian was obtained from the
quantum brachistochrone equation. Then the time evolution of the density operator and of
the Lindblad operators which represent an optimal measurement or decoherence was found
from a remaining set of ordinary differential and algebraic equations. In a particular case
an analytical solution was given, while the solution for more general situations was shown
numerically. To get a more physical intuition, we constructed an interacting two-qubit model
where an ancilla qubit plays the role of the environment and we demonstrated that repeated
short-time Markovian transitions can reproduce the time optimal evolution of mixed states.

It should be stressed here that although for the simplicity of the exposition we focused
our attention on different implementations of the time optimal evolution of a one-qubit model,
the general formalism of section 3 is valid for a Hilbert space of arbitrary finite dimensions.
In particular, given the physical constraints on the Hamiltonian of a multiple-qubit open
system, one can always find (albeit numerically) a solution to the quantum brachistochrone
equation (12), obtain the optimal Hamiltonian and then, solving the remaining equations of
motion (1), (7), (8) and (11), find the optimal Lindblad operators and the time-optimal quantum
trajectory.

Our general formulation allows, in principle, the existence of time-dependent Lindblad
operators. Master equations of the form (1) with an explicitly time-dependent Lindblad
generator are known to be physically relevant for both the description of Markovian dynamics
and the representation of non-Markovian time local dynamics in an extended Hilbert space
(see, e.g., [24, 31]).

Our work has not dealt with the more general case of different duration times for the
contacts between the system and the environment and the case of the possible memory feedback
from the environment itself. The authors of [32] also considered the problem of control in
dissipative quantum dynamics in order to achieve optimal purification of a quantum state, but
they worked within the standard framework of a set of constant Lindblad operators. Finally,
although there should be no conceptual difficulty in extending our work to the problem of
optimal quantum control via quantum feedback by introducing a stochastic term in the master
equation [33–35], we have not discussed this problem here.
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Appendix. Gauge invariance of the master equation

The evolution of ρ(t) described by the master equation (1) is invariant under the following
gauge transformations [24, p 119],

H �→ H + u(t)11 +
1

2i

∑
a

[
v∗

a(t)La − va(t)L
†
a

]
,

La �→ La + va(t)11,

(A.1)

and

H �→ H, La �→
∑

b

Uab(t)Lb, (A.2)

where u(t) is real, va(t) are complex, and Uab(t) form a unitary matrix with respect to its
indices (i.e.,

∑
c UacU

∗
bc = ∑

c U ∗
caUcb = δab). The parameter u(t) in (A.1) corresponds to

the U(1) gauge degree of freedom which was discussed in papers I and II for the case of pure
states. The gauge degrees of freedom va(t), instead, correspond to the fact that the operator
H(t) in (1) is not just the free Hamiltonian of the reduced system, but may contain coupling
terms with the environment (see, e.g., equation (36) in section 5). Finally, the Uab(t) represent
the freedom of the choice of the basis for the Hilbert space of the environment.
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